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Abstract—Saint-Venant decay rate of end effects is investigated for generally laminated orthotropic
strips under self-equilibrated end loads. The problem is governed by a fourth-order partial differ-
ential equation for the Airy stress function with discontinuous coefficients at the layer interfaces,
where displacements and traction continuities are imposed. The solution is found in the form of
product of an exponentially decaying function along the strip and an unknown function defined
over its total height. External face and interface conditions are used to obtain the characteristic
equation for the eigenvalues governing the decay rate of end effects along the strip. For orthotropic
and strongly orthotropic sandwich strips the transcendental eigenvalue equation is explicitly given.
The case of laminated strips with periodic layout is finally considered. Making use of the homo-
genization method, both effective elastic constants and expressions for the local stress variation at
the layer level are obtained. Numerical calculations confirm that the eigenvalues of the homogenized
material are the asymptotic values of those of periodically laminated strips when the number of
layers increases. Moreover, homogenization method is shown to be very powerful also in the
calculation of local stress distributions. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

The analysis of local effects for beams, plates or shells is a classical problem of structural
mechanics. Often Saint-Venant’s principle is invoked to separate the region (interior
domain) where the solution depends on the load resultants only, and that close to the
loaded region where a more complex analysis is required.

With reference to composite materials, many approaches have been proposed to obtain
detailed descriptions of stresses near loaded regions as well as to evaluate the decay length
of end effects. In fact, it is well established that local effects are very important for strongly
anisotropic or multilayered structural elements, since their decay is typically much slower
than for isotropic materials (Horgan, 1982, 1989, 1996; Horgan and Knowles, 1983;
Horgan and Simmonds, 1994). This phenomenon has important practical consequences in
many fields. In the mechanical testing of anisotropic materials, appropriate specimen sizes
and strain gauge placements must be adopted to disregard the effects of clamping of the
extremities (Folkes and Arridge, 1975). Local stresses are also very important for composite
material lap joints and plating systems by means of steel plates or thin Fiber Reinforced
Plastic laminae (Plevris and Triantafillou, 1992). Moreover, the knowledge of decay length
of end effects or local loadings is important in order to appropriately select FEM meshes
for numerical solutions concerning complex structures.

The simplest problem where end effects can be investigated is the semi-infinite strip
subject to self-equilibrated load distributions. For homogeneous isotropic strips, the classi-
cal Fadle-Papkovich eigenfunctions have been obtained (Timoshenko and Goodier, 1970) ;
the exponential decay rate of end effects is characterized by the eigenvalue with smallest
positive real part. This solution has been extended in Choi and Horgan (1977), Crafter ef al.
(1993) and Wang et al. (1993) to cover the cases of orthotropic and anisotropic homogenous
materials. For strongly orthotropic strips (typically fiber-reinforced composites), the
characteristic decay length has been found to be of the order of H(E,/G),)'?, where H, E,
and G, are the strip height, longitudinal Young modulus and shear modulus, so assessing
the importance of end effects. In this case, both eigenvalue conditions and solutions of full
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boundary-value problems can be simplified considerably. In fact, biorthogonality con-
ditions between the exact complex eigenfunctions reduce to simple (and more tractable)
orthogonality relations between real eigenfunctions (Horgan and Simmonds, 1991 ; Savoia
and Tullini, 1996).

Analytical results for isotropic sandwich strips were first obtained by Choi and Horgan
(1978) by solving the biharmonic equation for the Airy stress function with perfect bonding
at the interfaces and traction free lateral sides. They showed that very slow stress decay
arises when the Young’s modulus of the core is small compared with that of the external
faces. Anti-plane shear deformations of symmetric sandwich structures with anisotropic
layers have been examined recently by Baxter and Horgan (1995).

Few analytical studies have been carried out for laminated strips. Wijeyewickrema
(1995) analyzed a very particular symmetric deformation of a multilayered composite
consisting of two dissimilar alternating layers of isotropic materials, subject to self-equi-
librated loads symmetric with respect to each layer mid-plane, so that the representative
domain reduces to a sandwich cell with null transverse displacement and null shear stresses
at the external faces. The exponential decay rate has been written in terms of the two
Dundurs’ constants (1969). Multilayered strips have been studied by Dong and Goetschel
(1982) making use of a finite element interpolation over the laminate height.

In the present paper, an analytical procedure to obtain the eigenvalues and cor-
responding eigenfunctions for a generally laminated orthotropic strip is presented. The
Airy stress function is taken as the product of an exponentially decaying function in the
axial direction and an unknown function (the eigenfunction) over the strip height. For
orthotropic sandwich strips, the characteristic eigenvalue equation is explicitly given for
both symmetric and antisymmetric deformations. It is shown that this equation depends
on five combinations of elastic constants. Approximate eigenvalue equations are also
obtained for strongly orthotropic sandwich strips, depending on two elastic parameters
only. For typical composite sandwich strips the approximate eigenconditions usually give
rise to small errors with respect to the exact elasticity solution.

Finally, a homogenization technique is used to obtain effective elastic moduli and
expressions for local stresses at the layer level of a laminated strip with periodic layout.
The numerical applications confirm that the eigenvalues computed for the homogenized
material represent the asymptotic values when the number of layers increases, for both
symmetric and asymmetric laminations. An upper bound for the relative error of the
homogenized eigenvalues with respect to the exact values has been found to be of O(n?),
where n, is the number of elementary cells of periodicity, independently of the stacking
sequence and layer material properties considered.

In order to confirm the importance of these studies, it should be remembered that
eigenfunction expansions can be used to solve boundary-value problems for multilayered
strips subject to prescribed self-equilibrated end load distributions or displacements. From
the technical point of view, the interest in this kind of analysis for laminated composites is
that local effects represent the most relevant cause of delamination failures. In order to
carry out a boundary-value analysis, the completeness of eigenfunctions sets must be
proved. To date, this problem has been solved for the Fadle-Papkovich eigenfunctions for
homogeneous isotropic strips only (Gregory, 1980). For the problem at hand, the eigenvalue
problem is not self-adjoint, and bi-orthogonality relations between eigenfunctions must be
derived, as has been done in Choi and Horgan (1977) for orthotropic strips and, in a more
general case, in Gregory (1983). An alternative approach for boundary layer analysis based
on asymptotic expansion is proposed in Dumontet (1986).

2. GOVERNING EQUATIONS

Consider a semi-infinite multilayered rectangular strip of total height H = 2A. Ref-
erence axes x, and x, are set in the axial and transverse directions, respectively, so that the
strip domain is x, = 0, —A < x, < h. The strip is made of S orthotropic, linearly elastic
layers of height A%, with orthotropy axes coinciding with the reference axes. The long faces



Decay rate of end effects 4265

of the strip (x, = +4) are traction free and the end section x, = 0 is subject to self-
equilibrated load distributions.

The stress components ¢} (a, f# = 1,2) of the sth layer, satisfying the equilibrium
equations with null body forces, are written in terms of the classical Airy stress function
F9(x,y):

off =F%, o =F{, of}=—F%, (1)

where a subscript preceded by a comma denotes partial differentiation. The compatibility
equation yields the governing differential equation (Lekhnitskii, 1981) :

F,(izzz +E—(:)F,(";122 + (B(S)E(s))ZF,(?l 11 =0 (2)
where
() (s )
E9 = M’ (W ED)? = RY (3)
RS} Rt}

and the constants R,‘-}) are the usual reduced elastic coefficients of the sth layer. The non-
dimensional parameter defined in (3b) is identical to ¢ introduced by Miller and Horgan
(1995a, b). The coefficients of eqns (3) are given by

()
R :L RY) — _1- RG) = Viz RE — ! (4)
11 E(lx) > 22 E(S) > 12 E(x) s 66 G(f%
E(f) _ EW
. 5 ]
=S, OB = 5)
GY2 ES
for generalized plane stress or
— 1(8) ys) )y () (s) ()
RY — 1 —vi3v§] RY) = 1 —v3ivis RY — _ Vi +Vi3Vis RE — 1 (6)
= R’ = ) 12 —— - g6
E(ls) E(ZX) E(]:) G (]:%
(s} (] — vy
po__ 1 |EY —206%) + v ]’ (69 E9)? = EV(—viivi) %)
iR L6 ED (k)

for plane strain, where E, G{, v§ denote Young’s moduli, shear modulus and Poisson
ratio of the sth layer, respectively.

Introducing the dimensionless variables x = x,/A, y = x,/h, the strip domain reduces
to x = 0, |y] < 1. In the spirit of Saint-Venant’s principle, a decaying solution of eqn (2)
with boundary conditions representing self-equilibrated load distributions is sought in the
form:

FO(x,y) = Be™ Y (y), @®)

where 1 is the eigenvalue, which may be either real or complex, characterising the decay
rate of F(x,y) along x. The stress components (1) for the sth layer may then be written as

©

Substituting eqn (8) into eqn (2) yields a fourth-order ordinary differential equation
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for the eigenfunction ¥’ (y) (Choi and Horgan, 1977) ; for orthotropic layers (¢ % 1/2) the
corresponding solution is :

'Y i (5) (5)
V(y) = 4 cos ﬂ;c— Jy+ A9 sin T4

Ay

C() e e — e
+ A§ cos ———2 Ay+ A sin

=iy (10)
where A% are integration constants ( for each layer) and

P = JEO(142"), & = /JE9(1-2e9). (11

The eigenfunction (10) may be alternatively rewritten in the form:

Ay A iy WA
) 76 Ay Y | e 1Ay . A
YO (y) = AY cos —— 5 CoST5— + A% sin—— 5 sin—
) oy 94 o8
+ AY sin 2ycos——022y +AY cos lzysinczzy (12)

For an isotropic layer, eqns (3) give £ =2, ¢¥ =1/2, and eqn (2) reduces to the
classical biharmonic equation. Hence eqn (10) must be replaced by the Fadle-Papkovich
eigenfunctions (Timoshenko and Goodier, 1970):

Y(y) = AP cos Ly+ Ay sin Ay + AY sin Ly + APy cos Ay. (13)
Stress-strain relations can be written as:

u(S) /h — R(x) O-(S) +R( O-(S)
(S) /h — R(s) O.(S) +R(‘) a—(f)

() +ulh = RGot). (14)

Moreover, a differential equation for the transverse displacement u, can be obtained
from eqns (14a, 14¢) in the form:

u(ZS)xr/h R (s% O-(S) —-R (ls% O-(IS)I > R(]s% 0.(25% b (1 5)

Making use of eqns (9), the displacement components can be obtained by integrating
eqns (14a) and (15), so obtaining

RY) d2y©
up = — Ahe _;x< T a Rgsgl/,m)

us

H

C/RY Y RE+ R, dy®
—),he‘“<i v o TRz dY ) (16)

Pody? A dy

to within a rigid body displacement. Traction-free boundary conditions on the external
faces (y = +1) and perfect bonding at the interfaces y, (s = 1,..., S—1) can be written as:
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017 (x, —1) = o82(x, —=1) = 0, ¢{%(x,1) = 0P (x, 1) = 0, AR Y)
{01}, 053, ud, uf} = {o0 ", 655V, uf ™D, u* "} fory =y, (18)

Making use of eqns (9, 16), eqns (17, 18) give an homogeneous system of 45 equations
for the 45 unknown coefficients A" associated with the eigenfunction *)(y) of eqns (10)
or (12) (eigenvalue problem). Imposing the vanishing of the determinant of the coefficients
yields the infinite set of eigenvalue-eigenvector couples (4; 4%).

Finally, it can be verified that eqns (9) represent self-equilibrated stress distributions,
so providing a convenient framework for investigating the decay of end effects. For instance,
making use of eqns (17, 18) and integration by parts, the axial resultant becomes :

1 S dw(s’) Ve . dl//(S’l S5—1 dw(s) dw(H 1)
ondy=e ™Y | —— =e T - =0.
L ne s;[ dy I ‘ { dy fﬂ;[ dy — dy ]} 0

(19)

The approach presented above for general multilayered strips will be used in the next

sections to examine some interesting lamination cases, such as homogeneous and sandwich

strips where simple characteristic eigenvalue equations can be obtained, and multilayered
strips with periodic layout.

dy™

1 dy

3. HOMOGENEOUS STRIP

For homogeneous (single layer) orthotropic strips only the free-side boundary con-
ditions (17) must be imposed, and the eigenvalues A are the nonzero roots of the tran-
scendental equations (Choi and Horgan, 1977) :

sincli+sinc2}t_0 20)

& (4}

Plus and minus signs give the eigenfunctions which are even and odd functions of the
transverse coordinate y, corresponding to symmetric and antisymmetric deformations. In
the isotropic case (E£ = 2,& = 1/2), the material constants (11) take the values ¢, = 2 and
c; =0, eqns (20) reduce to sin241+24 =0 and the classical Fadle-Papkovich eigen-
conditions are reobtained.

As pointed out in Horgan and Simmonds (1991) and Miller Horgan (1995a,b),
although four elastic constants characterize an orthotropic strip, the eigenvalue problems
(20) can be rewritten in terms of the combined elastic parameter ¢ of eqn (3a) only. In fact
the eigenvalue 4 can be replaced with 2*/E'?, so discharging £ from the constants c,, ¢, (see
eqn 11). The first even eigenvalue 1* is plotted in Crafter et al. (1993) and Wang et al.
(1993) as a function of the combination of the elastic constants (different from ¢). Plots of
the first three even and odd eigenvalues A* vs ¢ may be found in Savoia and Tullini {1996).

When strongly orthotropic materials are concerned, i.e., for the ratio between shear
modulus and axial Young’s modulus approaching zero, the constant ¢ is close to zero and
¢ = ¢, = E'2. Therefore, eqn (20) yields the eigenconditions sin A* = 0 and tan A* = 1* for
the even and odd eigenfunctions, respectively. The former equation has been already
obtained by Choi and Horgan (1977), the latter by Horgan and Simmonds (1991) as the
zero-order solution of their asymptotic analysis of an end-loaded transversely isotropic
strip weak in shear and by Savoia and Tullini (1996) for the boundary problem of their
beam theory. This solution is particularly interesting when eigenfunction expansions are
used to solve boundary-value problems with prescribed stresses and/or displacements at
the ends. In fact, these eigenfunctions constitute a classical Sturm-Liouville complete set of
functions, satisfying simple orthogonality conditions, whereas more cumbersome tech-
niques are required for the general case (e.g., see Horgan and Knowles, 1983 ; Horgan
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1989; Kim and Steele, 1990; Lin and Wan, 1990). The numerical results obtained in
previous investigations agree very well with exact and finite element solutions even in the
neighbourhood of clamped cross-sections (Tullini and Savoia, 1995; Savoia and Tullini,
1996).

4. SANDWICH STRIP

A symmetric sandwich orthotropic strip is considered, where the external layers and
the core of thicknesses 4 and h® are made of two different materials denoted by super-
scripts (1) and (2). Setting:

R® RUW_R®
o= 11 , B — 66 66 (21)
RY) RYY

the eigenvalues A of the sandwich strip are the nonzero roots of the transcendental equation:

2[(cP ) a? + B21d, (1), (1) +dafd, (L) ds (2)
+a[2d; (A)dy () + (4D — ¢§7")ds (D)o (2) + (¢ — D) dy () dg (A)]
+2Bd, (A)da(A) +2[e§ — " + (P c§)2d, (D]do (D) =0 (22)

where :

d, (A) = sin 2(AciV AV H) D — sin 2(Ac AV 1 H) JesD*

dy(2) = sin(AcPhDH) [P + sin(icPh® [ H) [P

d;(A) = ¢Psin(AcP AP H) + &P sin(Ac¢P HP [ H)

dy(3) = cos(AciI2h | H) — cos(Acs 25D/ H)

ds (1) = cos(AcPh® | H) + cos(AcPhP [ H)

ds(3) = sin(Ac"2hD [ H) eV +sin(Acs) 20V [H) )

d;(A) = cos(AcPh® [H) F cos(Ac’hP[H)

dy(2) = sin(AcV 28V H) JetD —sin(AcV 280 [H) Je§D. (23)

In eqns (23) the upper sign corresponds to symmetric deformations of the middle

layer, i.e., AP = AP =0 in eqn (10), whereas the lower sign refers to antisymmetric
deformations, A = A{” = 0. The governing eigenvalue problem (22) depends on one
dimensionless height, e.g., A"/ H as well as on the six material parameters c{?, ¢’ (s = 1,2)
and «, B defined in eqns (11,21) (cf. Ting, 1995). By replacing A with A*/(E™)'? and
discharging £ from the constants ¢{" and c%", the eigenvalue equations can be rewritten
in terms of five parameters only, i.c., a, §, EZ?/E®D, ¢V, ¢@.

The elastic constants considered in the first numerical example, typical of a graphite-
epoxy composite, are similar to those adopted in Miller and Horgan (1995) :

E{) = 127.5Gpa, E{) = E{’ = 11GPa, G{) = 5.5GPa, v{§ = v{i} = 0.35, v§ = 0.25
E® = E® = 11GPa, EQ = 127.5GPa, G = 44GPa, v = 0.25, v = v =0
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Table 1. Eigenvalues for a sandwich strip [1-2-1] in plane strain.

Symmetric Antisymmetric
Mode Exact FEM Exact FEM
1 1.718392 1.718450 1.340142 1.340151
2 1.886235 1.886210 2.666545 2.666792
+0.395932: +0.395912;
3 2.659466 2.659775 4.348352 4.351796
4 4.103481 4.105499 4.378532 4.378044
+0.891135} +0.891208;
5 5.379101 5.387026 5.362104 5.370638
6 6.749806 6.753232 . 6.912725 6.939364
+0.733040i +0.740525¢
7 7.916500 7.963426 8.182118 8.194508
+0.266809i +0.280867i
8 8.060559 8.118900 9.060700 9.187669
9 9.311376 9.346139 10.767631 10.973767
+0.708227i +0.674485i
10 10.719300 10.919044 11.261657 11.244595
+1.644856i +1.646681:

Table 1 contains the first 10 symmetric and antisymmetric eigenvalues A for a three-
layered strip in plane strain with external layer thickness 4" = H/4 and stacking sequence
[1-2-1]. Displacement and stress components for the first even and odd eigenfunction are
depicted in Figs 1, 2. Comparison is made with numerical results obtained through the F.E.
technique proposed by Dong and Goetschel (1982), by adopting 40 elements over the strip
height and quadratic interpolation polynomials (162 degrees of freedom). Table 1 shows
that FEM technique gives very accurate results, the error being less than 2% for all the
eigenvalues computed. Observe that the eigenvalue of smallest real part corresponds to the
antisymmetric deformation.

For a sandwich strip with isotropic layers (E®) = 2, ¢¥ = 1/2), the eigenvalue equation
can be found from eqns (22, 23) for ¢{? - 2 and ¢’ — 0, so obtaining:

B2d, (A)d, (1) + 8apd, (A) sin(A2h® [ H) + 16afsin 24 + 21— d, (3)]
—8Bd,(A) sin *(A2hV [ H) + 16d,(2) = 0 (25)

Illlllllll llllllllll lllllllllll
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-1 0 1 -1 0 1 -0.3 0.0 0.3

Fig. 1. First even eigenfunction of a sandwich strip [1-2-1]. (a) Axial and transverse displacement ;
(b, ¢) Stress components. Stresses are reported to the accuracy of A%~** and scales by 1/93.36.
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Fig. 2. First odd eigenfunction of a sandwich strip [1-2-1]. (a) Axial and transverse displacement ;
(b, ¢) Stress components. Stresses are reported to the accuracy of A%~** and scales by 1/129.04.

where :
d,(A) = sin?(A2hV H)— (A2hV [ H)?,  d,(A) = sin(A2hP/H) + (A2h'®/H). (26)

It is easy to verify that eqn (25) is equivalent to eqn (3.5) reported in Choi and Horgan
(1978).

Of course, eigenvalue eqn (25) can be written with reference to material parameters
different from those reported in eqns (21). For instance, Wijeyewickrema (1995) and
Wijeyewickrema et al. (1996) showed that the two material constants proposed by Dundurs
(1969) offer considerable simplification in the analysis of end effects for isotropic sandwich
strips. In the isotropic case, the relation between Dundurs’ constants «,, f, and o and j of
eqns (21) are:

1—o =1—oc—ﬁ/4

S P

@7

5. STRONGLY ORTHOTROPIC SANDWICH STRIP

The eigenvalue problem (22) can be simplified if the layers are made of strongly
orthotropic materials. In this case, the ratios between shear and axial Young’s moduli
approach zero together with the constants &, so that ¢ = ¢ =(E®)"? = ¢“. By using
an appropriate Taylor expansion of eqn (22) with respect to & and introducing the
combined strip parameters A" = Ac"2AM/H, A® = 1c¢®h*/H, the eigenvalue problem (22)
reduced to:

S) ¢P/R{ cos AV sin AP + P /RE sin A cos AP =0 (28)
A) ¢V cos AV sin AP + P RE/REY sin A cos AP
+2¢DRA/RE(1— R /R (1 —cos AV) sin AP — (K?/H + RE /R 2D | H)
x AV (¢ cos AV cos AP — ¢V RG/RE sin AV sinAP) =0 (29)

for symmetric and antisymmetric deformations, respectively. It is easy to show that eig-
enconditions (28,29) can be written as a function of two material parameters only. For
instance, the following new eigenvalue and material parameters can be employed :
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Fig. 3. Contour lines for (a) even and (b) odd eigenvalues A* (see eqn 30a) vs material parameters
o, Py reported in eqns (30b,c) for a strongly orthotropic sandwich strip with layer thicknesses
[H/4, H2, H/4].
2
7= 2eD, 0y = e, fy = RQ/RY. (30)

In Figs 3a, b the contour lines of even and odd (real) eigenvalues A* are plotted as a
function of «, B, for a strongly orthotropic sandwich strip in plane strain with external
layer thickness AV = H/4.

It is interesting to assess the range of validity of approximate eigenconditions (28, 29),
that is the validity of the ‘strong orthotropy’ hypothesis. To this purpose, a sandwich strip
in plane strain with stacking sequence [1-2-1} is considered. The elastic constants adopted,
typical of a high-strength graphite-epoxy composite with cross-ply lamination scheme
[0/90/0] are (Pagano, 1969):

(1) E{Y =175GPa, E" = E{V = 7GPa, G} =3.5GPa, v} =W =

v = 0.25
@ = 0.25.

() EY = E® = 7GPa, EQ = 175GPa, G = 1.4GPa, v¥ = v = % 31

The parameters £ and ¢ of eqns (7) corresponding to materials (1) and (2) are
summarized in Table 2, together with the first eigenvalue of homogeneous strips made of
the two different materials. These eigenvalues are compared with those obtained from the
‘strong orthotropy’ hypothesis (¢ = 0). As is to be expected, material (1) can be considered
strongly orthotropic, the error being less 1.5%, whereas for the inner layer the error is 9.3%
for the first symmetric eigenfunction. Finally, for the sandwich strip, Fig. 4 shows the first
even and odd (real) exact eigenvalues and those obtained with the ‘strong orthotropy’
hypothesis, as a function of the external layer thickness 4"/H. The maximum error is
14.6% and occurs at #V/H = 0.195 for the symmetric eigenfunction. The error is much
smaller for the antisymmetric deformation (6.5% at A“/H = 0.1025). From Fig. 4, it
can be seen that the first eigenvalue for symmetric deformation is smaller than that for
antisymmetric deformation for 0.165 < h""/H < 0.435. Thus, in this range for A"/H, the
decay length for the symmetric deformation is larger than that for antisymmetric defor-
mation.

Table 2. First eigenvalue (real) 4, for homogeneous orthotropic strips in plane strain

Symmetric Antisymmetric
Material E £ Exact g=0 Diff. % Exact e=0 Diff.%
1) 49.49875 0.09793  0.453292 0.446532 —1.49 0.643923 0.638673 -0.81
2) 4.50627 0.22191 1.632086 1.479930 —-9.32 2.218750 2.116740 - 4,50




4272 N. Tullini and M. Savoia

25 | LALLJ;I L1 | i1 l_I_LI 11 l 11
A ~—2{ 2-D |

20 — A =0
] M 2D .. R

15 ] T Mes0p A M |
3 - -— |
. - h® | ) o H

1.0 -—E — h(l)I 6)) P
- - ”""

0.5 —

00 . TT , Trod ’ LA ) LI l TT1TT71

0.0 0.1 0.2 0.3 0.4 0.5 YH

Fig. 4. First even and odd exact eigenvalues of a sandwich strip vs external layer thickness #"/H,
compared with those obtained from the ‘strong orthotropy’ assumption.

6. LAMINATED STRIP WITH PERIODIC LAYOUT

6.1. Equivalent elastic coefficients via homogenization theory

Homogenization theory can be used in the study of partial differential equations with
rapidly varying coefficients. For periodic composite materials, the homogenization method
gives the effective elastic moduli of an homogeneous material whose overall response is
‘close’ to that of the heterogeneous periodic material when the size of the elementary cell
of periodicity, depending on a small parameter ¢, tends to zero. It allows also for the a-
posteriori computation of local stress variation at the layer level. For more information
about homogenization theory the reader is referred to Bensoussan et al. (1978), Sanchez-
Palencia (1980) and Oleinik er al. (1992).

The effective elastic coefficients of a layered strip can be obtained by homogenization
of the fourth-order operator (2) with boundary conditions (17, 18). These equations can be

rewritten in the compact form (o, 8,... = 1,2):
(5py6F5) 05 = 0 x>0, —h<x,<h 32)
FF=F,=0 X, = +h (33)
F=g, F\\=g x, =0 (34)

where the summation convention is used and partial differentiation must be considered in
the weak sense (virtual force principle), because the coefficients ag,; are piecewise constants
and periodic, with period of the order of ¢, but traction and displacement continuity (18)
must hold at the interfaces (essential and natural boundary conditions, respectively). For
orthotropic layers, the non vanishing coefficients a4, in eqn (32) are:

i1 = RS, a5250 = RYy, a1z = RY2, ai12 = Res/4- (35)

Further, g, and g, are prescribed functions at the strip end x, = 0.

The homogenization process is first performed with reference to the more general case
of a composite domain with periodicity in both directions x, and x,. Consider a bounded
Lipschitz domain Q of the space IR?>, whose points are denoted by x =(x;,x,) (global
coordinates). An auxiliar space IR*is introduced, with pointsy = (,, »,) (local coordinates),
and the single rectangular cell of periodicity is denoted by Y = ]0, ¥,[ x]0, Y[ (the repre-
sentative volume element, RVE). Let a,,,;(y) be bounded and Y-periodic functions satisfy-
ing the symmetry conditions a,p,s(¥) = @p.,s(¥) = @,5.5(¥) and the inequalities :
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MS,5Sp < Aupys(¥)SupSys < MS,3S,; VSesym(R? ® IR?) 36)

where m, M are positive constants. Hence, introducing the coordinate transformation
x: = gy, where & > 0 is a characteristic (small) parameter denoting the dimension of the
cell Y, the coefficients aj;,; are ¢ Y-periodic over Q and defined as:

oy () = g G) 37

For a periodic medium, the following problem governed by a fourth-order partial
differential operator with Dirichlet boundary conditions is considered :

Given aig,; bounded and ¢ Y-periodic, fe L*(Q), g, € H**(Q), g, e H'*(Q)
find F* e H?(Q) such that :

(s (X)F'y5) op = f(X) on Q

F*=g,, F, =g, ondQ

(3%

where n is the outward normal to 6Q, L2, H* are the Sobolev spaces, H'?> and H*? are trace
spaces. Trace theorem assures the existence of a function F, e H*(Q) such that F, = g,
F,, =g, on 0Q (see e.g., Reddy, 1986).

Hence, problem (38) admits the following variational formulation for e > 0:

Find F%: = F°*—F,e H3(Q) suchthat YFe H3(Q)

~ ~ ~ . 39
J‘ aiﬁvéFfl,yéEaﬂ dQ = ijdQ—J a;ﬁyéF*,vﬁF,aﬂ dQ ( )
Q Q Q

It can be shown that, as ¢ — 0, the solution F% of (39) converges weakly in H2(Q) to
FJ, unique solution of the homogenized problem:

Find F$: = F°—F,e H3(Q) suchthat VFe H3(Q)

. . . ~ 40
daBy&J\ Fg,yﬁF,aﬁ dQ = JdeQ_aaByﬁj. F*,yéEaﬁ dQ ( )
Q Q Q
where the homogenized coefficients 44,5 are given by
. 1
aaﬁvé = T~ (aaﬂy6 - auvy5 waﬁtpv) dy (41)
Y1}y

and w,(y), the homogenization functions, are the (unique) solution of the following
variational problem (the cell problem) :

Find w,; € HZ.(Y) such thatVve HZ,(Y)

42
J\ (amﬂvé - auvv6waﬂ|uv)v|yﬂ d Y=0 ( )
Y

where (#),, denotes partial derivative with respect to y, and
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H2.(Y): = {ve H*(Y)|vand v,, Y-periodic and J vdY = 0}. (43)
Y

The proof of this theorem is analogous to that of homogenization of the second-order
elliptic equation and of the elasticity problem (Bensoussan ef al., 1978 ; Sanchez-Palencia,
1980). Similar theorem statement is given in Duvaut (1976) for isotropic plates and in
Caillerie (1984, 1987) for anisotropic plates with extension-bending coupling, two problems
governed by a differential equation similar to eqn (32).

The theorem suggests the possibility of assuming, for small values of ¢, the following
two-scale asymptotic expansion for the solution F of the problem (39) (Kohn and Vogelius,
1984 ; Lewinski, 1991):

Fo(x) = F*(x) — &’ Fo(x)w,p(x/e) + O(c*). 44

This statement can be easily verified. Performing the second derivative of F*, multi-
plying by a,4,; and after some algebraic manipulations yield :

yppsF oy = F 2,a[f(aaﬂy6 — Ay Waﬂ“n)) —Fyup (auv;'é waﬁluv) +O(e). (45)

Hence, substituting eqn (45) in (39), neglecting terms of higher power of ¢, taking the
arithmetic mean over the period Y and assuming the test function F independent of ¢, the
homogenized problem (40) with coefficients (41) is reobtained.

In addition, if the test function is taken in the form £ = 8(x)v(x/e) with 8e C?(Q) and
ve HZ.(Y), performing the arithmetic mean of eqn (39) over Y yields:

J\ Fgﬁ [J\ (aaﬁ,.(; — Qs wzxﬁlpv)vlvé d Y]B dQ+ 0(83) = SZJ‘ fBV dQ. (46)
Q Y

Q

Because 0 is arbitrary implies that the expression in the square brackets of eqn (46) is
identically zero to the accuracy of higher order terms of ¢, so obtaining the governing
equation of the cell problem (42).

Moreover, starting from eqn (36) it can be proved that the homogenized coefficients
satisfy the symmetry conditions d,s,s = dp.,s = d,s.s and that two positive constants #, M
exist, such that a condition for them analogous to eqn (36) holds. Hence, Lax-Milgram
theorem proves the existence and uniqueness of the solution of problem (40) (see, e.g.,
Reddy, 1986).

6.2. Periodically laminated composite strip

For a composite medium periodic in one direction only, the homogenization process
can be performed analytically. If a,5,; are independent of y,, the RVE reduces to ¥ = 10, ;[
and the cell problem (42) gives the following differential equation :

(aaﬁ22 ~Q3222Wag22)122 = 0 on]0, Y[ @7

in the weak sense, with Y,-periodic boundary conditions for the function enclosed in
parentheses and for its first derivative with respect to y,. Double-integrating eqn (47) and
imposing the periodic boundary conditions, the following equation is obtained :

Wepl22 = (aaBZZ - aﬁ)/a2222 (48)

where C,4 can be obtained from the condition {w,g,> = [W,52]¢> = 0 in the form:
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Cy= <aaﬁzza{2122><az_zlzz>'l (49)

where (- > denotes the arithmetic mean over Y, :

IERE
<f>—|Y2|Lfdyz- (50)

Finally, the homogenized coeflicients can be explicitly obtained from eqn (41, 48) as:

Gups = {Qupys — Aa2ysWap22) = {upys — auﬁ22a2_2122022y6> + Cp<{a32,503252 ). (51)

For the composite strip with orthotropic layers, coefficients a,4,; are related to the
elastic moduli R; through eqn (35). Hence, eqn (51a) gives the following expressions for
the non vanishing effective elastic moduli :

It

Ry =1y =<{R7}>7", Ry = G =Ry —RLRT'D+{RL R DR ™!

R, = di1z = {RLRT DR DY, Iése = 4d;31; = (Res)- (52)

Analogously, derivatives of nonvanishing homogenization functions (48) are given
by:

Wiz (32) = [R12(y2)_R12]/R11(y2)
Waz22(y2) = I_Rll/Rll(yZ)' (53)

Finally, local stress distributions are obtained from eqns (1), (44) and (53):

o1 = Fipp = F.OzzR‘l1/R11(Y2)—Ff)11[R12(Y2)‘ﬁ12]/R11()’2)+0(3)
0iy = —F; = —FY,+0(), 65 = F'yy = Fh, +0(). (54)

These equations show that transverse shear and normal stresses depend on the stress
function F° of the homogenized material only and, correspondingly, no discontinuities are
present at the layer interfaces. On the contrary, the local values of elastic moduli R;(y;)
and R,,(y,) are present in the computation of axial normal stresses, which are discontinuous
at the layer interfaces, as is required by the elasticity problem.

6.3. Comparison between exact and homogenized solution

The exact eigenvalues of a multilayered strip with periodic layout are compared with
those obtained by the homogenization method.

The first example refers to a multilayered strip in plane strain, whose RVE consists of
a sandwich strip [1-2-1] with elastic constants reported in eqn (24) and layer thicknesses
[1/4,1/2,1/4] of the height of the elementary cell. The strip is made of n, elementary cells;
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Fig. 5. (a) Even and (b) odd eigenvalues for strips in plane strain vs number », of elementary cells
of periodicity, which are sandwich strips [1-2-1] with layer thicknesses [1/4, 1/2, 1/4] of the height
of the elementary cell.

the total number of layers is S = 2xn.4+1 and the stacking layout is symmetric. Figure 35
shows the real and imaginary parts of the first five even (1°) and odd (1°) eigenvalues as a
function of the number of cells. The eigenvalues A5, 45 and 15 are complex for n, = 1, 2,
n.=2and n.= 1, 3, 4, respectively; their imaginary parts are not plotted for the sake of
clearness. Making use of eqns (52), the homogenized material parameters are £ = 13.610
and & = 0.1797, whereas for the individual layers £V = 22,545, ¢¥ = 0.1470 and £% = 2,
¢® = 1/2. The eigenvalues 4 of the homogenized strip obtained from eqn (20) are reported
in Fig. 5 by straight lines. It is worth noting that both real and imaginary parts of the exact
eigenvalues approach asymptotically those of the homogenized strip as the number of
elementary cells », increases. Moreover, the convergence turns out to be monotone if the
number of cells is not too small, i.e., for n.> 2j (n. = 2j+ 1) for the jth even (odd) eigenvalue.

A classical problem in homogenization theory is the computation of upper bounds for
the error related with the homogenization process. For instance, upper bounds for eig-
envalues of vibration problems have been obtained in Sanchez-Palencia (1980) and Oleinik
etal. (1992). For the problem at hand, the relative error A; = |4,— ;ljl / lﬁjl of the homogenized
eigenvalues ﬁj with respect to the first two even and odd exact eigenvalues is depicted in
Figs 6a, b. In this case, the analytical estimate of the error is not available. However,

3 21 201 § 3 21 201

1 I A 11 IJ_LLIL B IO P W B 1 I 1 l IllLJl[ 1 Ll 1111}
~ _2\
22m

TTTT

TTTIT

10—5[ ;"l:l;l;ll zr rlllrl_l'] 10'5[ 2r I;IT;TT ; I:l;l;l
1 10 100 n, 1 10 100
(a) (b)

Fig. 6. Relative error A; = Ilj—ﬁjl/lijl for the first two (a) even and (b) odd eigenvalues of Fig. 5 vs
number n, of elementary cells of periodicity.
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Fig. 7. Stress distributions corresponding to the first even eigenfunction for a strip composed by
n, = 12 cells of periodicity [1-2-1] with layer thicknesses [1/4, 1/2, 1/4] (25 layers) :—Exact elasticity

solution ; <o Homogenized solution.

numerical computations suggest the validity of the following upper bound for the relative
error A;:

Fyy
A= '—fl—“—f' < Cn;? (55)
]

where C; is a constant independent of the number of cells #, whose value increases with the
number ; of the eigenvalue considered. This estimate is shown in Fig. 6 by a dashed line.
Even though, at the moment, this result cannot be given a general validity, it appeared to
be independent of the relative thickness and material properties of the layers. For instance,
analogous results have been obtained for periodically laminated strips with elastic constants
31).

The stress distributions corresponding to the first even eigenfunction for a periodically
laminated strip with 25 layers (n, = 12) and computed through eqns (54) are reported in
Fig. 7. It is confirmed that homogenization theory gives discontinuous results at the
interlaminae for the axial normal stress o, and continuous distributions of transverse shear
and normal stresses 6, 0;,. The results agree very well with those obtained through the
elasticity solution.

The second example refers to FRP-wood multilayered strips in plane stress. The elastic
moduli adopted for S-glass fibre-reinforced epoxy lamina (material 1) and wood (2) are:

(1) E) = 50GPa, EY = 12GPa, G\ = 5.5GPa, v{} = v{}) = v{) = 0.25
() E? = 10GPa, E = 0.8GPa, G{¥ = 0.5GPa, v2 = 0.35, v = 0.4, v = 0.3.
(56)

Figure 8a shows the first five eigenvalues 4 vs the number n, of elementary cells of
periodicity, which are constituted by bimaterial strips [1-2] with nondimensional layer thick-
nesses [1/10, 9/10] of the height of the elementary cell. The total number of layers is S = 2n,
and the stacking layout is asymmetric. Making use of eqns (52), the effective material
constants (3) are £ = 24.775 and & = 0.1606, whereas for the individual layers £ = 8.591,
&M = 0.2376 and £? = 19.300, ¢@ = 0.1832. The eigenvalues of the homogenized material
are obtained from eqns (20) and are reported in Fig. 8a by straight line. For asymmetric
layouts, symmetric and antisymmetric deformation modes cannot be separated, but they
converge to even and odd eigenvalues of the homogenized material. The relative error A; (see
eqn 55) for the first two eigenvalues is reported in Fig. 8b. As in the previous example,
both real and imaginary parts of exact eigenvalues approach asymptotically those of the
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Fig. 8. (a) Eigenvalues 4;and (b) relative errors A, for strips in plane stress vs number n, of elementary
cells of periodicity, which are bimaterial strips [1-2] with layer thicknesses [1/10,9/10] of the height
of the elementary cell.

homogenized strip as the number n, of elementary cells tends to infinity, and the order of the
relative error is O(n?).

The numerical results assure that the effective reduced elastic coefficients R, defined in
eqn (52) together with eigenconditions (20) give excellent estimates of eigenvalues of mul-
tilayered periodic strips. For the first eigenvalues, the approximation is good also when the
number of layers S is relatively low. For instance, with reference to the example of Fig. 6,
the error A, is less than 5% for S > 9 (S = 11) for the first even (0dd) eigenvalue whereas,
for that of Fig. 8b, the error is A, < 5% for § > 6.

7. SOME REMARKS ABOUT THE HOMOGENIZATION PROCESS

The results presented are correct for multilayered strips under plane strain, whereas
plane stress conditions must be treated much more carefully. In fact, the presence of free-
edge effects at the lateral sides is very important for laminated strips, as can be inferred from
the large amount of papers devoted to this topic. Hence, it is probably quite unrealistic to
perform the homogenization process by considering that plane stress hypothesis holds a-
priori for each individual layer.

A more correct approach should require the deduction of coefficients R;; from a three-
dimensional homogenized constitutive law. In this case, the effective elastic coefficients C,-,»,,k
for an orthotropic medium periodically-laminated in the x,-direction have been computed
analytically (Oleinik et al. 1992, corollary 7.14, cap. 1)

énn =k, +kik3), ézzzz = k3, C:3333 = k33 +kisk3,
Ciizr = kiakss', Ciiss = ks +kiskasks)', Copay = kysksy
Cia12 = {Ci2>7Y Cisns = {Cras)s Cozas = {Cihd™! N

_where the coefficients k; can be written, alternatively, in terms of elasticity constitutive
‘constants and engineering constants as:

ki, = <(Ci1i —ChCihay = (E /(1 =vi3va))
ki = <C2—2]22> = (I =vi2Va; = Va3V32 = V3 Vi3 —2V5 ViV )/ [E2 (1 —v3 vi3)])

k3z = {Cs333 _C§233C;2122> = (E3/(1=vy3v))
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Table 3. Plane stress : Effective elastic constants and first eigenvalue of the homogenized material obtained from
the two different limit processes

A

E E G, 1 E g 4,
{tr-0,e-0} 14.000 0.885 0.550 0.340 24.775 0.161 0.6546
{a -0, 1 0} 14.007 0.984 0.550 0.369 24.729 0.153 0.6595

ki, = <C1122C2—2122> = v+ Vi) /(1 =vi3v5 )
ki = <C1133—C1122C2233Cz_2l22> = (v Ey /(1 —vy3v3,))
ki3 = (C2233:C 220 = {(V32+vi2v31 /(1 —vi3v31)). (58)

The effective reduced elastic coeflicients 1@,-,- in eqns (57, 58) of the homogenized material
can be determined from three-dimensional elasticity making use of plane deformation hypoth-
esis. In this way, the plane stress hypothesis is used a-posteriori for the homogenized material
as the limit (leading term) for the beam width approaching zero (¢ — 0). The following elastic
coefficients are obtained for plane strain

Ry =ki)', Ry = kyy+kbki, Ry, = —k ki)', Res =<G1)') (59)

and generalized plane stress, respectively :

=
|

= (ky —k3k5s) 7!, Ry =(kyy +k3, +ky Kok — 2k 0k 5ka0k55) R,
Riy = —(kyy —ki3kask353 )Ry, Res = <G1R'). (60)

For plane strain, it can be easily verified that eqns (52) and (59) coincide. On the
contrary, for generalized plane stress two different sets of effective elastic moduli R, are
obtained, eqns (52,4) and (6), i.., the two different limit processes {first z — 0, then & — 0}
and {first ¢ > 0, then 7 — 0} do not commute.

For instance, for the bimaterial strip with S-glass epoxy-wood layers of Fig. 8, the
effective elastic constants and the first eigenvalue of the homogenized material are reported
in Table 3. Note that the Young moduli in the (fiber) axial direction are very close, whereas
for the elastic moduli governing the behavior in the transverse direction (E, and ) the
difference is close to 10 per cent.

This result is well known in homogenization theory. For instance, for the Kirchhoff-
Love plate theory, Caillerie (1984, 1987) proved that the two limits for the thickness of the
plate (¢ — 0) and the relative size of the periodic structure (¢ — 0) do not commute. In fact,
both limit processes yield the same plate equation, but with different stiffness coefficients
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